
University of Delaware
Department of Electrical and Computer Engineering
Computer Architecture and Parallel Systems Laboratory

TIDeFlow: The Time Iterated Dependency Flow Execution

Model

Daniel Orozco1

Elkin Garcia1

Robert Pavel1

Rishi Khan2

Guang Gao1

CAPSL Technical Memo 107

August 15th, 2011

Copyright c© 2011 CAPSL at the University of Delaware

1 University of Delaware and
2 ET International

{orozco, egarcia, rspavel, ggao}@capsl.udel.edu, rishi@etinternational.com

University of Delaware • 140 Evans Hall •Newark, Delaware 19716 • USA

http://www.capsl.udel.edu • ftp://ftp.capsl.udel.edu • capsladm@capsl.udel.edu

Abstract

The many-core revolution brought forward by recent advances in computer architecture

has created immense challenges in the writing of parallel programs for High Performance

Computing (HPC). Development of parallel HPC programs remains an art, and a univer-

sal doctrine for synchronization, scheduling and execution in general has not been found

for many-core/multi-core architectures. These issues are exacerbated by the popularity of

traditional execution models derived from the serial-programming school of thought. Previ-

ous solutions for parallel programming, such as OpenMP, MPI and similar models, require

significant effort from the programmer to achieve high performance.

This paper provides an introduction to the Time Iterated Dependency Flow (TIDeFlow)

model, a parallel execution model inspired by dataflow, and a description of its associated

runtime system. TIDeFlow was designed for efficient development of high performance

parallel programs for many-core architectures.

The TIDeFlow execution model was designed to efficiently express (1) parallel loops, (2)

dependencies (data, control or other) between parallel loops and (3) to allow composability

of programs.

TIDeFlow is a work in progress. This paper presents an introduction to the TIDeFlow

execution model and shows examples and preliminary results to illustrate the qualities of

TIDeFlow.

The main contributions of this paper are:

1. A brief description of the TIDeFlow execution model, and its programming model,

2. A description of the implementation of the TIDeFlow runtime system and its capabil-

ities and

3. Preliminary results showing the suitability of TIDeFlow to express parallel programs

in many-core architectures.

1 Introduction

The computational power of processors continues to increase every day due, in part, to the

increased number of parallel execution units brought forward by the many-core revolution.

Unfortunately, the increase in computational power often comes at the cost of programmers

and scientists expending significant effort exploiting the increased parallelism of many-core

processors.

We argue that the difficulties in exploiting the computational power of many-core processor

chips are, in part, due to the inertia of popular programming models such as OpenMP [4],

MPI [12] or even serial languages. Expressing parallelism in an efficient way under those

programming models is difficult. This is because the programmer is forced to intermix the

application code with runtime-related decisions such as: when should synchronization be done,

when should threads or tasks be created, when should signals be sent or received, what are the

This research was, in part, funded by the U.S. Government. The views and conclusions contained in this document

are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of

the U.S. Government.

3

IDs of processors, and so on. These difficulties in programming are offset by the development of

special purpose constructs, (e.g. OpenMP pragmas for stencil computations), but the problem

remains unsolved.

The dataflow models of computation [14] provide an alternative environment that is intrin-

sically parallel. By writing programs as graphs, the programmer can be abstracted from the

duties of synchronization, scheduling and task creation, leaving the runtime system responsible

to meet them.

Each one of the many parallel execution models existing were designed to target particular

necessities: Static Dataflow [6] is excellent for programs without recursion, Dynamic Dataflow

[1] handles recursion and has been shown to exhibit excellent parallelism, and Macro Dataflow

[20] leverages on the efficiency of serial architectures.

TIDeFlow is a parallel execution model that has been designed to efficiently express and

execute HPC programs. TIDeFlow leverages the following characteristics of HPC programs:

(1) the abundance of parallel loops, (2) expressiveness of dependencies (data, control or other)

between parallel loops and (3) composability of programs. The resulting design, explained in

Section 3 introduces weighted actors to address parallel loops and weighted arcs to address

concurrent execution of tasks (e.g. overlapping of communication and computation, double

buffering and pipelining).

The resulting TIDeFlow parallel execution model borrows many concepts from dataflow but

does not aim to be strictly dataflow. TIDeFlow provides a pact between the programmer and

the system in which the programmer expresses dependencies between tasks and the runtime

system enforces them. The main difference between TIDeFlow and more traditional dataflow

models is that dependencies can be data, control, or other.

A runtime system that implements the TIDeFlow execution model, hereby called the TIDe-

Flow Runtime System, has been developed. The TIDeFlow runtime system addresses the

specific features of HPC programs in many-core architectures: The presence of shared mem-

ory within one computer node, the large number of compute cores, and the intrinsic nature of

programs (loop structure, overlapping of communication and computation and so on).

The TIDeFlow Runtime system is fully distributed: There is no centralized process respon-

sible for scheduling, synchronization or task creation or termination. Instead, each processor

can, in a lock-free, concurrent way, schedule its own work, perform enforcement of local syn-

chronization signals and participate in distributed constructs such as join operations between

groups of tasks.

The effectiveness of TIDeFlow for the development of HPC programs was tested with several

common HPC kernels such as Matrix Multiply, simulations of electromagnetic waves propagat-

ing in 1 and 2 dimensions and Reverse Time Migration (RTM). In all cases we see that TIDeFlow

allows reasonable expressibility of the programs studied, while maintaining excellent scalability.

The rest of the paper is organized as follows: Section 2 provides relevant background and a

summary of related work. Section 3 formally presents the TIDeFlow execution model. Section

4

4 describes the implementation of TIDeFlow and its runtime system. Section 5 presents exper-

iments showing the usability of TIDeFlow. Section 6 presents a summary of this paper along

with conclusions and Section 7 presents possible future work directions.

2 Background

This section presents relevant background in dataflow execution models and their relationship

to the TIDeFlow execution model. Space limitations constrain the amount of information that

can be presented here to dataflow models that directly influenced the design of TIDeFlow.

Further information on dataflow models can be found in the comprehensive survey on the

classical dataflow execution models written by Najjar et al. [14].

Included in the survey by Najjar et al. is a description of Static Dataflow [6] and Dynamic

Dataflow [1]. Static Dataflow was studied very thoroughly in the development of TIDeFlow,

and it was found to have limitations to express parallel loops and to execute recursion, Dy-

namic Dataflow was also studied. TIDeFlow borrows the idea of using colors to simultaneously

distinguish multiple tokens in the same arc from Dynamic Dataflow.

Two works that build upon the concept of dataflow are Macro Dataflow [20] and the work

of Gao [9]. Macro Dataflow contributed the idea of aggregating several operations into a single

actor. TIDeFlow directly builds upon the work of Gao by facilitating the efficient pipelining of

operations in a dataflow graph.

However, TIDeFlow differs from traditional dataflow implementations in many ways. One

such difference is the use of weighted nodes, which are not present in Dynamic or Macro

Dataflow. This was inspired by a study of Petri Nets [13]. We used the concept of places

and transitions to help develop the concept of the weighted node. However, it is important to

note that TIDeFlow relies on shared memory to transfer data between its actors which is not

necessarily the case in Petri Nets.

Other approaches are similar to TIDeFlow in their objectives but not in their implemen-

tation or style. The Kernel for Adaptive, Asynchronous Parallel and Interactive Programming

(KAAPI) [11], is an execution system inspired by Dataflow, that leverages on the C++ philos-

ophy. Cilk [3], X10 [7], Habanero C, and Habanero Java [23] use asynchronous task creation

to achieve parallelism. TIDeFlow is similar to those models in that its runtime system uses

queues to distribute work among processors in a shared memory environment, but it differs in

the way that parallel loops are represented and executed as well as in the way programs are

expressed.

EARTH [15, 22] is a hybrid dataflow system where actors are classified as functions or

threads. TIDeFlow borrows the technique for signal synchronization from EARTH, but it is

different from EARTH in the way loops are represented and in the addition of weights in graphs.

5

3 TIDeFlow Execution Model

This section presents a description of the TIDeFlow execution model.

3.1 The Basics

TIDeFlow programs are expressed as graphs of weighted actors (nodes) and weighted arcs.

Both actors and arcs have state and associated properties.

3.1.1 Actors

The TIDeFlow execution model is based in the observation that HPC programs are composed

mostly of parallel loops.

Actors represent parallel loops: The nature of parallel loops are expressed through

actor properties which are constant: the number of iterations in the loop (N) and a function

f that contains the code to be executed by each iteration of the loop. As in Macro Dataflow

[20], actors execute a group of operations. Unlike macro dataflow, however, actors represent a

parallel loop rather than a single computation.

Actors have state: The state held by actors has been designed to ease the execution and

management of parallel HPC programs. The state of an actor is composed of:

• A time instance: An integer, initialized to zero that increases its value by one every time

an actor successfully fires.

• An execution state: An actor can be either not enabled, enabled, fired (executing), or

dead.

Figure 1 shows the state and the properties of an actor in TIDeFlow.

3.1.2 Tokens

When an actor finishes execution, it may signal other actors that depend on it by creating

tokens. Tokens are tagged by the time instance of the actor that produced them. This is

similar to dynamic dataflow execution models such as the MIT Tagged Token model [2] where

tokens are tagged with a color that in this case is the time instance at the time the tokens were

produced. Unlike the MIT Tagged Token model, tokens do not carry data, they only convey

the meaning of a dependence met for a particular time instance. Data is passed between actors

through shared memory. This is similar to the EARTH model of computation [22].

6

Time

instance Execution State:

One of {Enabled, Not

Enabled, Firing, Dead}

Number of Loop

Iterations

Function that

executes one

loop iteration.

Arc Weight7

68

6 6

Token with

time instance
Arc

1

0

0

2
0

f Nt=7 Not Enabled

Figure 1: A TIDeFlow actor

3.1.3 Arcs

Arcs represent data, control, or other kinds of dependencies between actors.

Arcs carry tagged tokens: The time instance of each token can be used to distinguish

between tokens in an arc. No two tokens contain the same time instance in the same arc

because, at most, one token per time instance per arc can be produced. Arcs are allowed to

carry an unbounded number of tokens, although particular implementations can restrict the

number of tokens to a certain maximum.

The weight of an arc represents dependence distance: A weight of k in an arc

indicates that at time instance t an actor must wait for a token tagged as t− k. By definition,

if t − k < 0 the token is assumed to exist and the dependence is met. The weights on the arc

allow a simple way to represent loop-carried dependencies between two actors.

3.2 Operational Semantics

This section provides a formal definition of the execution of a TIDeFlow program. The explana-

tion is conducted by modeling the behavior of actors as Finite State Machines (FSM) (Figures

2 and 3). As it will be explained, the two main components of the actor’s state, the execution

state and the time instance, are independent, so a state diagram is presented for each.

7

3.2.1 Execution of an Actor

An actor fires (executes) when it enters the firing state. The effect of an actor firing is that

each one of the N loop iterations represented by the actor are executed concurrently using the

function f of the actor. In other words, parallel, concurrent invocations of f(i), i = 0, ..., N − 1

are called. The actor finishes execution when all of the parallel invocations of the loop iterations

end. When the actor finishes execution it generates a termination signal and it may or may not

generate output tokens.

When the actor finishes execution, the actor increases its time instance.

3.2.2 Signals Generated by Actors

An actor only generates signals when it finishes firing.

Termination Signals: When an actor finishes firing, exactly one termination signal is

generated, and tokens in the output arcs may or may not be generated. The termination

signals can be CONTINUE, DISCONTINUE, and END. CONTINUE indicates that the execution of

the program should continue as normal, DISCONTINUE indicates that the actor should not be

executed again, but the rest of the program should continue and END indicates that the actor

and all of its consumers should end. The kind of signals generated is decided by the user

through the return value of the function f associated with the actor. It is a requirement of the

present specification that all parallel invocations of function f within the same actor and time

instance return the same signal value.

Generated Tokens: The generation of tokens is subordinated to the termination signal.

When CONTINUE is generated, exactly one token per output arc is generated and the token is

tagged with the time instance with which the actor executed. DISCONTINUE is a termination

signal that removes an actor from a graph along with its input and output dependency arcs. An

actor that generates a DISCONTINUE signal is never fired again and it does not need to produce

any tokens because the actor and all its associated arcs have been removed from the graph.

At implementation, a simple flag can be used to indicate this. Finally an END signal does not

generate any output tokens in any output arcs.

3.2.3 Actors With No Input Arcs

Conceptually, an actor becomes enabled when all its dependencies have been met. TIDeFlow

takes the stance that an actor with no input dependencies has all its dependencies automatically

met because it has zero pending dependencies. The result of this policy is that actors with no

input arcs may fire again if they produce a CONTINUE signal after they fire.

8

Signals

C: CONTINUE D: DISCONTINUE E:END

S: Scheduled by Runtime

T: Tokens available

Firing

Dead
Not

Enabled

Enabled

D,E
C,S,T,D,EC

S,T

T

C,D,E,S

C,D,E,T

S

Figure 2: State Transitions for Actors

3.2.4 Token Matching

An actor can only enter the enabled state when (1) it is in the not enabled state and (2) there

is one token tagged with the appropriate time instance in each arc. As explained in Section

3.1.3, the weight of the arc offsets the tag of the required token.

3.2.5 Actor Finite State Machine

The operational semantics can be summarized with the state diagram of Figures 2 and 3. The

execution state of the actors is independent of the time instance of the actor. For that reason,

separate FSM diagrams are given.

9

3.2.6 Termination of a Program

A program is defined to end when there are no actors that are firing or that are enabled.

3.3 Composability

Smaller programs can be used to build larger programs. This powerful property allows mod-

ularity and it gives the programmer useful abstractions that are not tied to implementation

details such as the number of processors available.

Composability is achieved by allowing small programs to be seen as actors in the larger

program that use them. In the current specification, to follow the conventions, the actor that

represents the small program is defined to have only N = 1 iterations, because the small

program is only executed once when it becomes enabled. Additionaly, by definition, small

programs return a CONTINUE signal when they complete.

By the current specification a TIDeFlow program can only be constructed from existing

programs. At this time, this design choice precludes the existence of recursive calls because a

program can not be used as part of itself.

Each use of a program does not interfere in any way with uses of other programs: When a

program is used as part of a larger program, it generates its own local state that exists for the

duration of the program only. Other uses of the same program have their local state.

3.4 Example: FDTD1D Kernel

Figure 4 shows the kernel for a simulation of an electromagnetic wave propagating in 1

dimension using the Finite Difference Time Domain (FDTD) algorithm.

0 1 2 ...C,D,E C,D,E

X X X

C,D,E

Signals

C: CONTINUE D: DISCONTINUE E:END

X: Other Signals

Figure 3: State Transitions for Time instances

10

1 int Ef(int i, int t) {
2

3 /* Single loop iteration */
4 E(i,t+1) = k1 * E(i+1,t) + k2 * (H(i+1,t) - H(i,t));
5

6 /* Termination Condition */
7 if (t == Timesteps) { return END; }
8

9 return CONTINUE;
10 }
11

12 int Hf(int i, int t) {
13

14 /* Single loop iteration */
15 H(i,t+1) = H(i,t) + E(i,t+1) - E(i+1,t+1);
16

17 /* Termination Condition */
18 if (t == Timesteps) { return END; }
19

20 return CONTINUE;
21 }
22

23 void EH_Kernel(void) {
24 t = 0;
25

26 start:
27

28 /* E Parallel Loop */
29 parallel for i in 0 to N-1
30 Signal = Ef(i, t);
31

32 if (Signal == END) { return };
33

34 /* H Parallel Loop */
35 parallel for i in 0 to N-1
36 Signal = Hf(i, t);
37

38 if (Signal == END) { return };
39

40 /* Time instance */
41 t++;
42

43 /* Loop to execute the kernels again */
44 goto start;
45 }

Figure 4: FDTD1D Code

The serial version of the FDTD1D kernel shown in Figure 4 was written with the intention

to demonstrate how to map an HPC program to a TIDeFlow program. A standard, equivalent,

way to write the FDTD1D kernel can be found in [16, 21].

The equivalent FDTD1D TIDeFlow program is shown in Figure 5. The program is a direct

map of the program in Figure 4.

11

Ef N Hf N

0

1

11

EH_Kernel

Figure 5: FDTD1D expressed in TIDeFlow

The parallel loops have become actors (Ef and Hf). The dependencies between the loops

have been specified as arcs following the convention for weights in arcs: A weight of k exists

between two actors if the execution of instance t + k depends on an execution at time t. The

Hf at time t needs the Ef at time t to have completed so the arc between them has a weight of

zero. The Ef at time t + 1 needs the Hf at time t to have completed so the arc between them

has a weight of 1. In a similar fashion, Ef requires E(i,t) to compute E(i,t+1), so it has a

self-dependency with weight of k = 1. A similar argument shows that there is a self dependency

on the Hf with a weight of k = 1.

3.5 Memory Model

This section strives to present an intuitive explanation of the TIDeFlow memory model. A

formal, mathematical definition of the TIDeFlow memory model will be the subject of another

publication.

The memory model of TIDeFlow has been designed to provide useful constructs for program-

mers while at the same time allowing simple practical implementations in many-core systems.

Seeking simplicity of implementation and design, the TIDeFlow model uses shared mem-

ory as the main way of actors to communicate data. This decision facilitates communication

between actors at the expense of the necessity of additional rules to avoid race conditions.

The following statements represent the intuition behind the TIDeFlow memory model.

12

1. Execution of each one of the loop iterations that compose an actor appears serial.

2. No provisions are specified as to data sharing between loop iterations in the same actor,

in the same time iteration: The model assumes that actors represent parallel loops and

not other kinds of loops.

3. A dependency from an actor A to an actor B ensures that B can use data produced by

A.

4. In order to use programs as part of larger programs, all memory operations in a program

must have completed when the program ends.

4 Implementation of TIDeFlow

The implementation of TIDeFlow presented several challenges that ultimately resulted in in-

teresting advances and tools: A fully distributed runtime system, a programming language to

describe program graphs, concurrent algorithms [17] and new ways to reason about performance

models [18].

This section presents an overview of those challenges and the products that resulted from

their solution.

4.1 Programming Model

TIDeFlow programs are composed of (1) a graph, such as the graph of Figure 5 that represents

the interactions between parallel loops and (2) functions that describe what computations must

be done in the parallel loops, in the style of the code presented in Figure 4.

It is envisioned that a source to source compiler can obtain a graph description expressed

in a simple graph format –such as the DOT language used by Graphviz [8] – and converts it to

use a C interface to declare the existence of the actors and their relationship. At this point in

the development of TIDeFlow, the programmer must use the C interface to declare the actors

and the dependencies between them.

4.2 Intermediate Representation

Several desirable features were identified during the design cycle of the TIDeFlow runtime

system, including the ability to support future compiler optimizations, or the possibility to

change the program at various stages of compilation. As a result, an intermediate representation

was designed to represent the program during the early stages of compilation.

The intermediate representation of TIDeFlow programs uses a small data structure to rep-

resent each actor. A program is represented by an array-of-structures that contains the actors.

13

The design of the intermediate representation aims to express the graph as a collection of

integers. For example, whenever a reference to an actor is used, its offset in the program’s

array-of-structures is used rather than a pointer. This same representation is used to describe

arcs: Two integers are used to represent an arc, representing the starting and ending actor of

the arc.

Representing TIDeFlow programs as a collection of integers has the great advantage of

allowing simple duplication of a program (for composability of programs) and portability to

other architectures.

Currently, the intermediate representation is computed automatically by the TIDeFlow

toolchain.

4.3 Compiling and executing a program

The final stage of compilation of a TIDeFlow program takes into account the architecture

in which it runs and leaves the program resident in memory. At this point, saving a compiled

program to non-volatile storage is not supported. For that reason, the compiler and the launcher

of a TIDeFlow program are integrated into the same tool.

Compilation of a TIDeFlow program consists of translating the intermediate representation

into an executable data structure: Offsets in the IR structures result in pointers in the final

program and memory is allocated and initialized for the actors. The resulting executable data

structure contains actors with their properties and their states, linked through pointers that

follow the dependencies specified in the original program.

A TIDeFlow program is executed when a pointer to the program is passed to the runtime

system. The runtime system scans the program and schedules all actors that have no depen-

dencies for time instance zero. The execution continues until the runtime system detects that

no more actors will be scheduled.

4.4 Runtime System

The TIDeFlow runtime system supports the execution of programs by providing scheduling,

synchronization, initialization and termination of programs.

The basic unit of execution for scheduling and execution in the runtime system is the task.

A task represents one unit of computation that must be done. For example, each one of the

parallel iterations on an actor are represented by a single task in the runtime system. To allow

immediate visibility of available work, all tasks that become enabled are written to a queue

that can be accessed concurrently by all processors.

Perhaps the most important feature of the runtime system is that it is fully distributed.

There is no one process or thread or task in charge of the runtime system duties. Instead each

processor concurrently (1) performs its own scheduling and (2) handles localized signals related

14

to the actor being executed by the processor, including enabling other actors and writing them

to the global task queue. The TIDeFlow runtime system is fully distributed with regard to the

processors, because no one processor, thread, or task is responsible for scheduling, but it is still

centralized from the point of view of the memory because the runtime system uses a single,

global queue.

Development of a decentralized runtime system required advances in concurrent algorithms

and in the internal representation of actors and tasks. These advances were achieved by our work

in concurrent algorithms for runtime systems [18] and in task representation and management

[19].

In our first study [18], we found that using a global queue in a decentralized system is

possible if the queue is designed to sustain a high throughput of operations in a concurrent

environment. Our study has resulted in a very efficient queue algorithm that can be used by

processors to concurrently schedule their own work.

In our second study [17], we found that there is a high similarity in tasks from the same

actor: They have the same properties and they execute the same function. Such similarity

can be exploited to decrease the number of operations required to write those tasks in the

centralized queue, greatly reducing the overhead of the runtime system.

Our runtime system, with the improvements developed through our work [18, 17], has

resulted in a very high performance decentralized system, with overheads that are much lower

than the average duration of tasks, even for fine grained programs. Section 5 shows that our

runtime system is an excellent choice to support the execution of parallel programs on many-core

architectures.

5 Experiments

This section presents experimental results regarding the usability of TIDeFlow. We show results

on the scalability and performance of the TIDeFlow model itself.

It should be noted that presenting experimental evidence about every aspect of TIDeFlow

is outside of the scope of this paper. Instead, the objective of this section is to show that

TIDeFlow is usable, that it is reasonably efficient and that it is a reasonable choice to develop

and execute HPC programs.

We believe that TIDeFlow is competitive, at least, when compared to other HPC parallel

execution models. However, such a study will be the subject of another publication. The main

objective of this publication is to present the TIDeFlow model and to present it as a tool for

parallelism in many-core architectures.

15

5.1 Experimental Testbed

5.1.1 Many-Core Architecture Used

All experiments were run on Cyclops-64, a many-core architecture by IBM that features non-

preemptive execution, no cache, and 160 execution units per chip, of which 156 are available

to the user. Cyclops-64 has been described extensively in previous publications [10, 16, 5].

Cyclops-64 was chosen for our experiments because its large number of execution units allow

excellent studies in scalability and parallelism for HPC programs.

Both the TIDeFlow runtime system, its associated tools and the programs used in the

experiments were written in C and they were compiled using ET International’s compiler with

compilation flags -O3 -g.

Cyclops-64 processor chips are, at the moment this paper was written, available only to the

US Government. For that reason, the results were produced with FAST [5], a very accurate

simulator that has been shown to produce results that are within 10% of those produced by

the real hardware.

5.1.2 Test Programs

The effectiveness of the TIDeFlow approach was tested using a simulation of an electromagnetic

wave propagating using the FDTD algorithm in 1 and 2 dimensions (FDTD1D and FDTD2D),

a 13-point Reverse Time Migration (RTM) kernel and matrix multiplication (MM).

FDTD1D computes a problem of size 499200 with 3 timesteps and tiles of size 800. FDTD2D

computes a problem of size 750 by 750 with 3 timesteps and tiles of size 25 by 25. Matrix

multiplication multiplies matrices of size 384 by 384, using tiles of size 6 by 6 using the tiling

described in [10]. RTM was run with input size 132 by 132 by 132 with tiles of size 6 by 6 by

6 with 8 timesteps.

5.2 Scalability

Each test program was run with a varying number of active processing units to investigate the

scalability of the TIDeFlow model as a whole.

Figure 6 presents a summary of the resulting experiments. The figure reports the speedup

resulting from using multiple processors when compared to an execution that uses a single

execution unit.

As can be seen from the figure, TIDeFlow provides good scalability for scientific programs.

16

5.3 Performance of the Runtime System

An analysis of the performance of a runtime system itself and not of a particular application

using the runtime system is difficult because the activities of the runtime system ultimately

depend on what the application requires.

A reasonable way to look into the performance of a runtime system is to look at the time

it takes to execute operations. In that sense, a number of related publications by the authors

have advanced techniques to optimize particular operations by the runtime.

Tasks in TIDeFlow are managed through a centralized queue that uses the CB-Queue algo-

rithm (presented and discussed in detail in [18]). Previous research shows that the CB-Queue

algorithm is an excellent choice for concurrent systems, and extensive experimental evidence of

its usability and its impact as part of a runtime system were presented in one of our previous

publications [18].

Task management was further improved with our polytask technique [17] that took advan-

tage of the similarity between tasks in HPC programs. The study presented in [17] shows that

polytasks allow a higher efficiency when executing fine grained programs.

An argument in [17] also shows that the efficiency of a runtime system is intrinsically

tied to the program it runs. In particular, it provides an explanation saying that (1) when the

granularity of a program is very fine, the intrinsic performance of the runtime has a high impact

on efficiency and (2) when the granularity of a program is very coarse, the intrinsic performance

of the runtime does not play a significant role in the overall execution of the program.

To finish the discussion on the performance of the runtime system we can analyze the results

of one of our experiments designed to measure the overhead of individual runtime operations. In

the experiment, we ran the RTM kernel again, with 156 processors and with profiling enabled

Figure 6: Scalability of several kernels using TIDeFlow

17

to see the amount of time taken by each runtime operation. We saw a total of 2.26 × 105

runtime operations made. Of those operations, 97% took less than 900 cycles to complete and

99.65% took less than 3000 cycles to complete. The remaining 0.25% operations corresponded

to processors waiting for work to become enabled. To give a reference in the overhead of the

runtime system, an average, assembly-optimized task in a program takes 30000 cycles, and a

full program is in the order of 1010 cycles. As a conclusion, we observed that the overhead of

the runtime is low when compared to the duration of individual tasks and programs.

6 Summary and Conclusions

This paper presented TIDeFlow, a parallel execution model designed to express and execute

HPC programs.

The TIDeFlow model has roots in the dataflow model of execution. However, two main

contributions are made to dataflow: (1) parallel loops are natively represented as a single

actor using weighted nodes and (2) loop carried dependencies are represented as weighted arcs

between actors.

In this paper, the TIDeFlow model has been formally defined: the operational semantics

of execution have been described as Finite State Machines, a brief discussion of the memory

model was presented, and the method by which to use weighted arcs to express loop carried

dependencies has been described.

The experience of implementing the runtime system and executing the experiments shows

that TIDeFlow is an effective way to develop and execute parallel programs. The graph pro-

gramming model expresses parallelism more easily than traditional synchronization primitives,

and the distributed runtime system provides very good scalability and low overhead.

In our experience developing the experiments presented in Section 5, we have found several

good characteristics offered by TIDeFlow: (1) We found that it was easy to express double

buffering by using the composability property to duplicate code and by using weighted arcs to

indicate a time dependency between the loader stages, (2) the dependencies that we expressed

through weighted arcs resulted in good task pipelining during execution, (3) we found that it

was easier to express the dependencies through a graph rather than through other direct means

such as conditional variables, or MPI processes and (4) load balancing was done automatically

by the runtime system. For those reasons, we have concluded that TIDeFlow is a good choice

for execution and development of HPC programs in many-core architectures.

7 Future Work

The TIDeFlow execution model is still a work in progress. Many aspects of TIDeFlow merit

further investigation. This section presents a list of the research that will be conducted in the

future.

18

The TIDeFlow memory model needs to be formalized and studied. This memory model

then needs to be compared to existing memory models and an argument for its usability, either

for execution or for development of processors, has to be made.

The properties of TIDeFlow programs must be explored. One such property is a comparison

of the memory footprint of TIDeFlow programs in comparison to the memory footprint of an

equivalent serial program. Other properties include, but are not limited to, well behavedness.

Additional extensions to the TIDeFlow model are being contemplated as well. Priorities

of execution of actors may prove to be an interesting topic. The usability of mutual exclusion

constructs could be studied. The behavior of programs with respect to composability could

also be modified, for example, to allow recursion or the producing of arbitrary signals.

8 Acknowledgments

This research was made possible by the generous support of the NSF through grants CCF-

0833122, CCF-0925863, CCF-0937907, CNS-0720531, and OCI-0904534.

References

[1] Arvind and D. E. Culler. Dataflow architectures, pages 225–253. Annual Reviews Inc.,

Palo Alto, CA, USA, 1986.

[2] K. Arvind and R. S. Nikhil. Executing a program on the mit tagged-token dataflow

architecture. IEEE Trans. Comput., 39:300–318, March 1990.

[3] R. Blumofe and C. Leiserson. Scheduling multithreaded computations by work stealing. In

Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages

356 –368, nov 1994.

[4] B. Chapman, G. Jost, and R. v. d. Pas. Using OpenMP: Portable Shared Memory Parallel

Programming (Scientific and Engineering Computation). The MIT Press, 2007.

[5] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao. Toward a software infrastructure for the

cyclops-64 cellular architecture. In High-Performance Computing in an Advanced Collab-

orative Environment, 2006., page 9, May 2006.

[6] J. B. Dennis. First version of a data flow procedure language. In Programming Symposium,

Proceedings Colloque sur la Programmation, pages 362–376, London, UK, 1974. Springer-

Verlag.

[7] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: Programming for hierarchical parallelism

and non-uniform data access. In Proceedings of the International Workshop on Language

Runtimes, OOPSLA, 2004.

19

[8] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz open source

graph drawing tools. 2265:594–597, 2002.

[9] G. R. Gao. A pipelined code mapping scheme for static data flow computers. PhD thesis,

Massachusetts Institute of Technology, 1986.

[10] E. Garcia, I. E. Venetis, R. Khan, and G. Gao. Optimized Dense Matrix Multiplication

on a Many-Core Architecture. In Proceedings of the Sixteenth International Conference on

Parallel Computing (Euro-Par 2010), Part II, volume 6272 of Lecture Notes in Computer

Science, pages 316–327, Ischia, Italy, 2010. Springer.

[11] T. Gautier, X. Besseron, and L. Pigeon. Kaapi: A thread scheduling runtime system

for data flow computations on cluster of multi-processors. In Proceedings of the 2007

international workshop on Parallel symbolic computation, PASCO ’07, pages 15–23, New

York, NY, USA, 2007. ACM.

[12] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the Message-

Passing Interface. MIT Press, Cambridge, MA, USA, 1999.

[13] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541 –580, apr 1989.

[14] W. A. Najjar, E. A. Lee, and G. R. Gao. Advances in the dataflow computational model.

Parallel Comput., 25:1907–1929, December 1999.

[15] S. Nemawarkar and G. Gao. Measurement and modeling of earth-manna multithreaded

architecture. In Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems, 1996. MASCOTS ’96., Proceedings of the Fourth International Workshop on,

pages 109 –114, feb 1996.

[16] D. Orozco and G. Gao. Mapping the fdtd application to many-core chip architectures. In

Parallel Processing, 2009. ICPP ’09. International Conference on, pages 309 –316, sept.

2009.

[17] D. Orozco, E. Garcia, and G. Gao. Locality optimization of stencil applications using

data dependency graphs. In Proceedings of the 23rd international conference on Languages

and compilers for parallel computing, LCPC’10, pages 77–91, Berlin, Heidelberg, 2011.

Springer-Verlag.

[18] D. Orozco, E. Garcia, R. Khan, K. Livingston, and G. Gao. High throughput queue

algorithms. CAPSL Technical Memo 103, January 2011.

[19] D. Orozco, E. Garcia, R. Pavel, R. Khan, and G. Gao. Polytasks: A compressed task

representation for hpc runtimes. In Proceedings of the 24th international conference on

Languages and compilers for parallel computing, LCPC’11.

20

[20] V. Sarkar and J. Hennessy. Partitioning parallel programs for macro-dataflow. In Proceed-

ings of the 1986 ACM conference on LISP and functional programming, LFP ’86, pages

202–211, New York, NY, USA, 1986. ACM.

[21] A. Taflove and S. Hagness. Computational Electrodynamics: The Finite-Difference Time-

Domain Method. Artech House, third edition, 2005.

[22] K. Theobald. EARTH: An Efficient Architecture for Running Threads. PhD thesis, 1999.

[23] Y. Yan, S. Chatterjee, D. Orozco, E. Garcia, Z. Budimlic, J. Shirako, R. Pavel, V. Sarkar,

and G. Gao. Hardware and Software Tradeoffs for Task Synchronization on Manycore

Architectures. In Proceedings of the Seventeenth International Conference on Parallel

Computing (Euro-Par 2011). To appear., Lecture Notes in Computer Science, Bordeaux,

France, 2011.

21

